If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-5=31
We move all terms to the left:
12x^2-5-(31)=0
We add all the numbers together, and all the variables
12x^2-36=0
a = 12; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·12·(-36)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*12}=\frac{0-24\sqrt{3}}{24} =-\frac{24\sqrt{3}}{24} =-\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*12}=\frac{0+24\sqrt{3}}{24} =\frac{24\sqrt{3}}{24} =\sqrt{3} $
| 24=12+11x | | y=20-10(-2) | | 3x−152=4,5 | | (3a+5)=(4a-3) | | 9=x-6*2 | | 3(x-5)=2(x–1) | | 56-x=x★x/100 | | 2x⁶+14=0 | | 2(2x1)=3(x-4) | | n-532=372 | | 4(2x1)=5x+4 | | 5x/2=1-x/6,x∈R | | 0.9x=500 | | 5n-12.5-n=2n-6.8+n | | 15.7-n=2n+9.2 | | 3n+4=2n+12 | | 8x^-6x+1=0 | | (x^2+10x+24)(2x^2+7x+5)=0 | | 5/20=n8 | | 7k-2+9=29 | | 3x-5=4/x=2,x=3 | | x+x/2+2/3=3x/2+5 | | y15=6 | | 3n-1/5=2n+3 | | 2m/5=6 | | 37+x+25=93 | | 2p3+8=20 | | 2x-9=-1x= | | n-18=5.3 | | f(0)=250 | | 4c-7=2c+5 | | x/2+3/2=5/2 |